Biophysical properties as determinants for soil organic carbon and total nitrogen in grassland salinization.

2013 
Grassland salinization causes considerable changes to soil and vegetation, which can lead to changes in soil organic carbon (C) and total nitrogen (N). These changes have complex causal relationships. A significant correlation between soil organic C and total N and any soil or vegetation property does not necessarily imply a significant direct effect of the property on soil organic C and total N. In this study, a field survey was conducted to investigate the changes in soil organic C and total N in grassland along a salinity gradient in Hexi corridor, China, and the direct and indirect effects of soil and vegetation properties on both stocks were quantified using a path analysis approach. Significant decrease in soil organic C and total N contents were observed with increasing salinity. Both had significant positive correlations with the Normalized Difference Vegetation Index (NDVI), soil water, and fine particles (silt+clay) content (p<0.01) and significant negative correlations with soil EC, and sand content (p<0.01). NDVI, fine particles content and soil water content had positive direct effects on soil organic C and total N stocks. Soil EC affected soil organic C and total N stocks mainly through its indirect negative effect on NDVI, soil texture, and water content. NDVI, soil texture, and moisture also indirectly affected soil organic C and total N stocks via changes in each other. These indirect effects augmented each other, although in some cases indirect effects worked in opposing directions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    19
    Citations
    NaN
    KQI
    []