Residual Dipolar Couplings in Zero-to-Ultra-Low-Field Nuclear Magnetic Resonance

2015 
Zero-to-ultra-low-field nuclear magnetic resonance (ZULF-NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the interaction averages to zero under isotropic molecular tumbling. Under partial orientational ordering, this information is retained in the form of so-called residual dipolar couplings. We report zero-to-ultra-low-field NMR measurements of residual dipolar couplings in acetonitrile-2-$^{13}$C aligned in stretched polyvinyl acetate gels. This represents the first investigation of dipolar couplings as a perturbation on the indirect spin-spin $J$-coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero-to-ultra-low-field NMR and may have applications in chemical analysis, precision measurement of subtle physical interactions, and characterization of local mesoscale structure in materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []