Functional recruitment of dynamin requires multimeric interactions for efficient endocytosis

2019 
During clathrin mediated endocytosis (CME), the concerted action of dynamin and its interacting partners drives membrane scission. Essential interactions occur between the proline/arginine-rich domain of dynamin (dynPRD) and the Src-homology domain 3 (SH3) of various proteins including amphiphysins. Here we show that multiple SH3 domains must bind simultaneously to dynPRD through three adjacent motifs for dynamin’s efficient recruitment and function. First, we show that mutant dynamins modified in a single motif, including the central amphiphysin SH3 (amphSH3) binding motif, partially rescue CME in dynamin triple knock-out cells. However, mutating two motifs largely prevents that ability. Furthermore, we designed divalent dynPRD-derived peptides. These ligands bind multimers of amphSH3 with >100-fold higher affinity than monovalent ones in vitro. Accordingly, dialyzing living cells with these divalent peptides through a patch-clamp pipette blocks CME much more effectively than with monovalent ones. We conclude that dynamin drives vesicle scission via multivalent interactions in cells. During clathrin mediated endocytosis (CME), membrane scission is achieved by the concerted action of dynamin and its interacting partners such as amphiphysins. Here authors show that efficient recruitment and function of dynamin requires simultaneous binding of multiple amphiphysin SH3 domains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    16
    Citations
    NaN
    KQI
    []