Effect of kisspeptin (KISS) and RFamide-related peptide-3 (RFRP-3) on the synthesis and secretion of FSH in vitro by pituitary cells in pigs

2021 
Abstract Kisspeptins (KISSs) and RFamide-related peptide-3 (RFRP-3) affect the synthesis and secretion of luteinizing hormone (LH) and modulate female reproductive processes. The presence of KISS and RFRP-3 in the porcine pituitary gland and their contribution to the regulation of follicle-stimulating hormone (FSH) synthesis and secretion is unknown. This study analyzed the presence of KISS and RFRP-3 in the pituitary of estrous-cyclic pigs on days 2 to 3, 10 to 11, 12 to 13, 15 to 16 and 19 to 20 and early pregnant pigs on days 10 to 11, 12 to 13 and 15 to 16, and evaluated the effect of KISS and RFRP-3 on β-Fsh mRNA expression and FSH secretion in vitro by pituitary cells collected on selected days of the estrous cycle. The cells were cultured in vitro and treated with KISS (10−6 M, 10−7 M) and RFRP-3 (10−6 M, 10−7 M) or gonadotropin-releasing hormone (GnRH; 100 ng/mL) alone and in combinations (4 h or 24 h). The relative abundance of Kiss and Rfrp-3 and their receptor mRNA transcripts, as well as the KISS and RFRP-3 proteins, were found in the pituitaries of estrous-cyclic and early pregnant pigs. KISS after 4 h increased the secretion of FSH in estrous cyclic pigs mostly during the early-luteal phase and luteolysis. RFRP-3 inhibited the synthesis and secretion of FSH in estrous-cyclic pigs on days 19 to 20 and the secretion of FSH on days 2 to 3 and 10 to 12 of the estrous cycle compared with GnRH-treated cells. KISS in co-treatment with GnRH after 24 h enhanced FSH release on days 2 to 3 and 15 to 16 of the estrous cycle. In conclusion, KISS and RFRP-3 systems are present in the pituitary of estrous-cyclic and pregnant pigs. In estrous-cyclic pigs, KISS and RFRP-3 may affect the synthesis and secretion of FSH by pituitary cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    1
    Citations
    NaN
    KQI
    []