Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips

2018 
Interlayer friction between the atomic planes of 2D materials and heterostructures is a promising probe of the physics in their interlayer couplings and superlubricity. However, it is still challenging to measure the interlayer friction between well-defined 2D layers. We propose an approach of thermally assisted mechanical exfoliation and transfer (TAMET) to fabricate various 2D flake-wrapped atomic force microscopy (AFM) tips and to directly measure the interlayer friction between 2D flakes in single-crystalline contact. First, superlubricity between different 2D-flakes and layered bulk materials is achieved with the friction coefficient as low as 10-4. The rotation angle dependence of superlubricity is observed for friction between graphite layers, whereas it is not observed between graphite and h-BN because of the incommensurate contact of the mismatched lattices. Second, the interlayer lateral force map between ReS2 layers is measured with atomic resolution, showing hexagonal patterns, as further veri...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    56
    Citations
    NaN
    KQI
    []