Study of gene expression profiles in TK6 human cells exposed to DNA-oxidizing agents

2010 
Abstract During the last decade, there has been clear progress in using threshold in risk assessment but its acceptance by scientists is still under debate. Contrary to indirect DNA-damaging agents, DNA-reactive agents have been assumed to have a non-threshold mode of action, as they directly induce DNA lesions that potentially can be converted into mutations. However, in recent years there is a growing number of data establishing threshold doses even for these DNA-reactive compounds. Indeed, there are several defence and repair mechanisms that provide protection and that may be responsible for genotoxic thresholds. In this context, we recently showed that DNA-oxidizing agents exhibit a thresholded dose–response in vitro with respect to chromosomal alterations. We have hypothesized the involvement of different cellular responses whose nature and efficiency depend on the stress level. The aim of this study was to develop a more complete understanding of these underlying mechanisms. We investigated global gene expression profiles of human lymphoblastoid TK6 cells after exposure to potassium bromate and hydrogen peroxide ( via glucose oxidase). Cells were treated for 1 h and mRNAs were isolated either immediately at the end of the treatment or after a 23-h recovery period. Our results showed that cells have developed elaborate cellular responses to oxidative stress in order to maintain genomic integrity. Many of altered genes were redox-sensitive transcription factors such as p53, NF-κB, AP-1 and Nrf2. Their downstream target genes and signalling pathways were subsequently activated leading mainly to the induction of antioxidant defenses, inflammation, cell cycle arrest, DNA repair and cell death. Overall, our study allowed the identification of key events involved in the thresholded response observed after DNA-oxidizing agents exposure and shows the usefulness of the combination of standard in vitro genotoxicity assays with gene expression profiling technology to determine modes of action, particularly for critical risk assessment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    16
    Citations
    NaN
    KQI
    []