ThermodynamicAnalysis of Metal–Ligand Cooperativityof PNP Ru Complexes: Implications for CO 2 Hydrogenationto Methanol and Catalyst Inhibition

2019 
The hydrogenation of CO2 in the presence of amines to formate, formamides, and methanol (MeOH) is a promising approach to streamlining carbon capture and recycling. To achieve this, understanding how catalyst design impacts selectivity and performance is critical. Herein we describe a thorough thermochemical analysis of the (de)hydrogenation catalyst, (PNP)Ru–Cl (PNP = 2,6-bis(di-tert-butylphosphinomethyl)pyridine; Ru = Ru(CO)(H)) and correlate our findings to catalyst performance. Although this catalyst is known to hydrogenate CO2 to formate with a mild base, we show that MeOH is produced when using a strong base. Consistent with pKa measurements, the requirement for a strong base suggests that the deprotonation of a six-coordinate Ru species is integral to the catalytic cycle that produces MeOH. Our studies also indicate that the concentration of MeOH produced is independent of catalyst concentration, consistent with a deactivation pathway that is dependent on methanol concentration, not equivalency. Ou...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    33
    Citations
    NaN
    KQI
    []