Dynamic Lane-Changing Trajectory Planning for Autonomous Vehicles Based on Discrete Global Trajectory

2021 
Automatic lane-changing is a complex and critical task for autonomous vehicle control. Existing researches on autonomous vehicle technology mainly focus on avoiding obstacles; however, few studies have accounted for dynamic lane changing based on some certain assumptions, such as the lane-changing speed is constant or the terminal state is known in advance. In this study, a typical lane-changing scenario is developed with the consideration of preceding and lagging vehicles on the road. Based on the local trajectory generated by the global positioning system, a path planning model and a speed planning model are respectively established through the cubic polynomial interpolation. To guarantee the driving safety, passenger comfort and vehicle efficiency, a comprehensive trajectory optimization function is proposed according to the path planning model and speed planning model. In addition, a dynamic decoupling model is established to solve the problems of real-time application to provide viable solutions. The simulations and real vehicle validations are conducted, and the results highlight that the proposed method can generate a satisfactory lane-changing trajectory for automatic lane-changing actions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []