Effect of powerful pulsed and continuous ion beams on the Al- Cu-Mg alloy structure

2016 
The paper considers the results of an electron microscopy study of the VD1 alloy of the Al-Cu-Mg system after cold working and subsequent irradiation with a powerful pulsed ion beam (70% C+ + 30% H+, E = 180 keV) in the pulsed-periodic mode (t = 80 ns, f = 0.1 Hz, j = 200 A/cm2, F = 1-1014 cm-2) and under the conditions of the generation of only one pulse (t = 180 ns, j = 100 A/cm2, F = 2-1015 cm-2). It is established that this irradiation noticeably affects the microstructure of the cold-worked 3 mm thick sheets of VD1 alloy. The initial cellular dislocation structure transforms into a subgrain one. The intensity of structural transformations in the alloy increases with ion current density of a pulse. A similar transformation of a dislocation structure over the entire thickness of the sample is observed under irradiation with continuous Ar+ ion beams (E = 20-40 keV) with not high fluences (1015-1016 cm-2).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    1
    Citations
    NaN
    KQI
    []