Hydrodynamics- and Hydrochemistry-affected Microbial Selenate Reduction in Aquifer: Performance and Mechanisms

2021 
Abstract Selenate [Se(VI)] with higher content in groundwater will be harmful for human beings. Hence, effective treatment for Se(VI) in aquifer should be conducted reasonably. Microbial reduction of Se(VI) to elemental selenium with weak movability and toxicity has attracted significant attention due to its high efficiency and no secondary contamination. However, hydrodynamic and hydrochemical influences with corresponding mechanisms during Se(VI) bioreduction are still not clear. In this study, influences of flow rate, initial Se(VI) and organic concentrations, coexisting nitrate were evaluated. Se(VI) removal efficiency and capacity reached 96.42 ± 6.82% and 41.28 ± 3.41 (g/m3·d) with flow rate of 0.56 mL/min, initial Se(VI) and chemical organic demand concentrations of 10 mg/L and 400 mg/L. Dechloromonas and Pseudomonas were presumably contributed to Se(VI) reduction, with upregulated serA and tatC genes. Solid Se0 was identified as the final product from Se(VI) reduction. These results will be beneficial for the further comprehending of Se(VI) remediation in aquifer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    4
    Citations
    NaN
    KQI
    []