Modification of TiO2 Nanowire Arrays with Sn Doping as Photoanode for Highly Efficient Dye-Sensitized Solar Cells

2019 
The dye-sensitized solar cell (DSSC) is one candidate among the third-generation solar cells. The performance of most DSSCs based on TiO2 photoanode was limited by the low electron mobility within TiO2. To produce a much higher power conversion efficiency, Sn-doped TiO2 nanowire arrays were successfully prepared using a simple hydrothermal process. It was found that Sn doping augments electron mobility well and raises the flat band potential to improve the performance of DSSCs. The power conversion efficiency (η) of a DSSC based on the reasonable Sn-doped TiO2, N719 dye, platinized counter electrode and iodide/triiodide electrolyte reaches 8.75%. Furthermore, with an anatase TiO2 light scattering layer, a DSSC based on the Sn-doped TiO2 NWAs exhibits a remarkable power conversion efficiency of 9.43%, which is especially useful in weak light conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    86
    References
    10
    Citations
    NaN
    KQI
    []