Applying synchronous fluorescence spectroscopy conjunct second derivative and two-dimensional correlation to analyze the interactions of copper (II) with dissolved organic matter from an urbanized river.

2021 
Heavy metal speciation and distribution is significantly influenced by dissolved organic matter (DOM) exhibited in ecosystems, particularly in urbanized rivers. Synchronous fluorescence spectroscopy (SFS) conjunct second derivative and two-dimensional correlation spectroscopy (2D-COS) was devoted to characterizing interactions of DOM-copper (II). Three typical water samples were collected from Baitapu River. Only protein-like fluorescence (PLF) and fulvic-like (FLF) were identified from the SFS. Stability constant (log K) values of PLF complexes with copper (II) varied from 4.277 to 5.833, and proportion of binding fluorescent materials (f) were 0.054-2.640. The log K values of FLF complexes with copper (II) varied from 3.996 to 4.243, while the f values were 0.001-0.036. Obviously, PLF had much stronger complexing capacity than FLF. There were four obvious peaks in the principal component analysis and second derivative fluorescence spectroscopy (SDFS), i.e., tyrosine-like (TYLF), tryptophan-like (TRLF), microbial humus-like (MHLF) and FLF. The log K values of TYLF and TRLF complexes were 4.899-5.907 and 4.598-5.831, respectively, which were similar to those from PLF. The log K values of MHLF complexes varied from 4.311 to 5.760, and the f values were 0.261-8.688. The log K values of FLF complexes were ranged from 4.598 to 5.831, which were higher than those deduced from the SFS. Interestingly, by the SDSF, PLF was divided into TYLF and TRLF, which increased the parameters values from DOM-copper (II) complexes. 2D-SFS-COS revealed that the TRLF was more susceptive response to copper (II) appended than TYLF, MHLF, and FLF. Moreover, TYLF and TRLF could priorly interact with copper (II). The SDSF conjunct 2D-COS could be effective approaches for insight into the complexing heterogeneity of DOM with copper (II). The study could present a support to preventing heavy metals and organic pollution in urbanized rivers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []