Pseudospin-1 Systems as a New Frontier for Research on Relativistic Quantum Chaos

2019 
Pseudospin-1 systems are characterized by the feature that their band structure consists of a pair of Dirac cones and a topologically flat band. Such systems can be realized in a variety of physical systems ranging from dielectric photonic crystals to electronic materials. Theoretically, massless pseudospin-1 systems are described by the generalized Dirac-Weyl equation governing the evolution of a three-component spinor. Recent works have demonstrated that such systems can exhibit unconventional physical phenomena such as revival resonant scattering, superpersistent scattering, super-Klein tunneling, perfect caustics, vanishing Berry phase, and isotropic low energy scattering. We argue that investigating the interplay between pseudospin-1 physics and classical chaos may constitute a new frontier area of research in relativistic quantum chaos with significant applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    93
    References
    0
    Citations
    NaN
    KQI
    []