Measurement of 12C Fragmentation Cross Sections on C, O and H in the Energy Range of interest for Particle Therapy Applications

2020 
In a carbon ion treatment the nuclear fragmentation of both target and beam projectiles impacts on the dose released on the tumor and on the surrounding healthy tissues. Carbon ion fragmentation occurring inside the patient body has to be studied in order to take into account this contribution. These data are also important for the development of the range monitoring techniques with charged particles. The production of charged fragments generated by carbon ion beams of 115–353 MeV/u kinetic energy impinging on carbon, oxygen, and hydrogen targets has been measured at the CNAO particle therapy center (Pavia, Italy). The use of thin targets of graphite (C), PMMA (C2O5H8) and polyvinyl-toluene [plastic scintillator (PS), ${\text{C}}_{b}{\text{H}}_{a}$ ] allowed to measure fragments production cross sections, exploiting a time-of-flight (ToF) technique. PS detectors have been used to perform the ToF measurements, while LYSO crystals have been used for the deposited energy measurement and to perform particle identification. Cross sections have been measured at 90° and 60° with respect to the beam direction. The measured proton, deuteron, and triton differential production cross sections on C, O, and H, obtained exploiting the target subtraction strategy, are presented here as a function of the fragment kinetic energy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    5
    Citations
    NaN
    KQI
    []