Assaying Cell Cycle Progression via Flow Cytometry in CRISPR/Cas9-Treated Cells.

2021 
CRISPR/Cas9 system is a powerful technique for genome editing and engineering but obtaining a sizeable population of edited cells can be challenging for some cell types. CRISPR/Cas9-induced cell cycle arrest is a possible cause of this barrier to efficient editing; thus, it is desirable to know the cell cycle progression profile of any given cell line or type of interest resulting from CRISPR/Cas9 treatment. Here we describe a flow cytometry-based assay that enables the determination of cell cycle progression in the presence of CRISPR/Cas9 treatment, in addition to the transfection and expression efficiencies of Cas9 vectors. This assay can also easily determine the effect of various interventions on obtaining a larger pool of Cas9-treated cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []