Decoupling Control Strategy for Cathode System of Proton Exchange Membrane Fuel Cell Engine

2020 
Precise control of cathode pressure and flow rate is critical to the performance and durability of proton exchange membrane fuel cell systems. This study presents a model of the cathode subsystem of fuel cell engines, and the degree of air flow rate-pressure coupling in different working areas of air compressor is analyzed. A decoupling control algorithm based on the active disturbance rejection control is then designed to realize precise regulation of air pressure and flow rate. Finally, experiments are conducted on a domestic 80kW fuel cell engine, and the effectiveness of the control algorithm is validated. The experimental results indicate that the designed control algorithm has strong flow rate-pressure decoupling ability with fast response and high control accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []