Silver nanoprisms as plasmonic enhancers applied in the photodynamic inactivation of Staphylococcus aureus isolated from bubaline mastitis

2021 
Abstract Mastitis is a bacterial infection that affects all lactating mammals, and in dairy cattle, it leads to a reduction in their milk production and, in worse cases, it may lead to animal death. One viable therapeutic modality for overcoming bacterial resistance can be Photodynamic inactivation (PDI), a possible therapeutic modality for bacterial infection treatment. One of the main factors that can lead to an efficient PDI process is the association of metallic nanoparticles in the close vicinity of photosensitizers, which has shown promising results due to localized surface plasmon resonance phenomena. In this work, methylene blue (MB) molecules were associated with Ag prismatic nanoplatelets (AgNPrs) to use as PDI photosensitizer against Staphylococcus aureus isolated from bubaline mastitis. The optical plasmonic activity of AgNPrs was tuned to the MB absorption region (600 – 700 nm) by inducing their growth into prismatic shapes by a seed-mediated procedure, using poly (sodium 4-styrene sulfonate) as the surfactant. A simulation on the plasmonic properties of the nanoprisms, applying particle size within the dimensions determined by TEM image analysis (d = 32 ± 6 nm), showed a 30% increase of the incident field on the prismatic tips. Photodynamic results show that the electrostatic AgNPr―MB conjugates promoted enhancement (ca. 15%) of the reactive oxygen species production. Besides, PDI mediated by AgNPrs―MB led to the complete inactivation of the mastitis S. aureus strain after 6 min inactivation, in contrast to PDI mediated by MB, which reduced less than a 0.5 bacterial log. Thus, the results show this plasmonic enhanced photodynamic tool's potential to be applied in the inactivation of multi-resistant bacterial strains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []