Quantification of electricity flexibility in demand response: Office building case study

2019 
Abstract Electric demand flexibility in buildings has been deemed to be a promising demand response resource, particularly for large commercial buildings, and it can provide grid-responsive support. A building with a higher electricity flexibility potential has a higher degree of involvement with the grid response. If the electricity flexibility potential of a building is known, building operators can properly alleviate peak loads and maximize economic benefits through precise control in demand response programs. Previously, there was no standard way to quantify electricity flexibility, and it was difficult to evaluate a given building without experiments and tests. Thus, a systematic approach is proposed to quantify building electricity flexibility. The flexibility contributions include building thermal mass; lights; heating, ventilation, and air conditioning (HVAC) systems, and occupant behaviors. This proposed model has been validated by the instantiation of an office building case on the Dymola platform. For a typical office building, the results show that the electricity flexibility resource not only comes from the HVAC system, but also thermal mass and occupant behavior to a large degree, and buildings with energy flexibility can cut down much of their load during peak load time without compromising on the occupant's comfort.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    27
    Citations
    NaN
    KQI
    []