Overall Non-Mechanical Spectrally Steered LiDAR Using Chirped Amplitude-Modulated Phase-Shift Method

2021 
We propose and demonstrate an overall non-mechanical spectrally steered laser rangefinder using the dispersion-tuned swept laser (DTSL) and a passive diffractive element. The DTSL has no mechanical moving parts, making it possible to achieve an inertial-free high wavelength sweeping speed. The inherent intensity-modulation characteristic of the DTSL allows the modulation phase-shift method to be applied, similar to that used for an amplitude-modulated continuous-wave (AMCW) rangefinder. Since the pulse repetition rate of the DTSL is chirped, standard signal processing techniques for AMCW are not applicable. In this paper, we propose a novel chirped amplitude-modulated phase-shift (CAMPS) method with a signal processing technique to obtain the phase-shift information from a chirped amplitude-modulated signal. As a proof of concept, we demonstrated the CAMPS LiDAR with an axial ranging resolution of ~50 m at a scanning speed of 10 kHz.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []