Room temperature emission from single defects in WO3 enhanced by plasmonic nanocrystals

2021 
Room temperature light emission from optically active defect centers in two-dimensional layered materials has attracted great interest in recent years owing to the critical applications in the field of quantum information technologies. Therefore, efficient generation, detection, characterization, and manipulation of spatially localized emission from the defect centers are of crucial importance. Here, we report localized, stable, and bright room temperature photoluminescence (PL) emission from defects in WO3. In particular, the experimentally observed polarized and power dependent PL emission shows single photon characteristics. In addition, density functional theory calculations indicate that the source of the emission is most probably oxygen vacancy defects in WO3. The PL emission obtained from the localized defect centers in WO3 at room temperature has been, further, enhanced more than 20 times by using plasmonic gold nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []