Identifying TCDD-resistance genes via murine and rat comparative genomics and transcriptomics

2019 
The aryl hydrocarbon receptor (AHR) mediates many of the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, the AHR alone is insufficient to explain the widely different outcomes among organisms. Attempts to identify unknown factor(s) have been confounded by genetic variability of model organisms. Here, we evaluated three transgenic mouse lines, each expressing a different rat AHR isoform (rWT, DEL, and INS), as well as C57BL/6 and DBA/2 mice. We supplement these with whole-genome sequencing and transcriptomic analyses of the corresponding rat models: Long-Evans (L-E) and Han/Wistar (H/W) rats. These integrated multi-species genomic and transcriptomic data were used to identify genes associated with TCDD-response phenotypes. We identified several genes that show consistent transcriptional changes in both transgenic mice and rats. Hepatic Pxdc1 was significantly repressed by TCDD in C57BL/6, rWT mice, and in L-E rat. Three genes demonstrated different AHRE-1 (full) motif occurrences within their promoter regions: Cxxc5 had fewer occurrences in H/W, as compared with L-E; Sugp1 and Hgfac (in either L-E or H/W respectively). These genes also showed different patterns of mRNA abundance across strains. The AHR isoform explains much of the transcriptional variability: up to 50% of genes with altered mRNA abundance following TCDD exposure are associated with a single AHR isoform (30% and 10% unique to DEL and rWT respectively following 500 μg/kg TCDD). Genomic and transcriptomic evidence allowed identification of genes potentially involved in phenotypic outcomes: Pxdc1 had differential mRNA abundance by phenotype; Cxxc5 had altered AHR binding sites and differential mRNA abundance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    1
    Citations
    NaN
    KQI
    []