GPR signature of Quaternary faulting: a study from the Mt. Pollino region, southern Apennines, Italy

2021 
Abstract. With the aim of unveiling evidence of Late Quaternary faulting, a series of Ground Penetrating Radar (GPR) profiles were acquired across the Campotenese continental basin (Mt. Pollino region) in the southern Apennines active extensional belt (Italy). A set of forty-nine 300 MHz and 500 MHz GPR profiles, traced nearly perpendicular to a buried normal fault, were acquired and carefully processed through a customized workflow. The data interpretation allowed us to reconstruct a pseudo-3D model depicting the boundary between the Mesozoic bedrock and the sedimentary fill of the basin, which were in close proximity to the fault. Once reviewing and defining the GPR signature of faulting, we highlight in our data how near surface alluvial and colluvial sediments appear to be dislocated by a set of conjugate (west and east-dipping) discontinuities that penetrate inside the underlying Triassic dolostones. Close to the contact between the continental deposits and the bedrock, some buried scarps which offset wedge-shaped deposits are interpreted as coseismic ruptures, subsequently sealed by later deposits. Although the use of pseudo-3D GPR data implies more complexity linking the geophysical features among the radar images, we have reconstructed a reliable subsurface fault pattern, discriminating master faults and a series of secondary splays. We believe our contribution provides an improvement in the characterization of active faults in the study area which falls within the Pollino seismic gap and is considered potentially prone to severe surface faulting. Our aim is for our approach and workflow to be of inspiration for further studies in the region as well as for similar high seismic hazard areas characterized by scarcity of near-surface data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []