CorLab-Net: Anatomical Dependency-Aware Point-Cloud Learning for Automatic Labeling of Coronary Arteries

2021 
Automatic coronary artery labeling is essential yet challenging step in coronary artery disease diagnosis for clinician. Previous methods typically overlooked rich relationships with heart chamber and also morphological features of coronary artery. In this paper, we propose a novel point-cloud learning method (called CorLab-Net), which comprehensively captures both inter-organ and intra-artery spatial dependencies as explicit guidance to assist the labeling of these challenging coronary vessels. Specifically, given a 3D point cloud extracted from the segmented coronary artery, our CorLab-Net improves artery labeling from three aspects: First, it encodes the inter-organ anatomical dependency between vessels and heart chambers (in terms of spatial distance field) to effectively locate the blood vessels. Second, it extracts the intra-artery anatomical dependency between vessel points and key joint points (in terms of morphological distance field) to precisely identify different vessel branches at the junctions. Third, it enhances the intra-artery local dependency between neighboring points (by using graph convolutional modules) to correct labeling outliers and improve consistency, especially at the vascular endings. We evaluated our method on a real-clinical dataset. Extensive experiments show that CorLab-Net significantly outperformed the state-of-the-art methods in labeling coronary arteries with large appearance-variance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []