Effects of miR-34c-5p on Sodium, Potassium, and Calcium Channel Currents in C2C12 Myotubes

2020 
The aim of this study was to investigate the effects of miR-34c-5p on the main voltage-dependent ion channels in skeletal muscle cells. This study focused on the effects of miR-34c-5p on sodium, potassium, and calcium currents in C2C12 myoblasts. The miR-34c-5p overexpression group, knockdown group, and control group were differentiated for 7 days, fused into myotubes, and used for the whole-cell patch clamp recording. Compared with the control group, the whole-cell sodium current density of the other two groups had no significant changes. In the knockdown group, the delayed rectifier potassium current density was increased (statistically significant), and the whole-cell calcium channel current density did not change. In the overexpression group, the change of rectifier potassium current density was not obvious, while the peak calcium channel current density increased (− 9.23 ± 0.95 pA/pF, n = 6 cells for the overexpression group vs. − 6.48 ± 0.64 pA/pF, n = 7 cells for the control; p < 0.05). Changes in the expression of miR-34c-5p can affect the electrophysiological characteristics of calcium and potassium voltage-gated channels in C2C12 myotubes. Overexpression of miR-34c-5p increased whole-cell L-type calcium channel current (ICa,L), while miR-34c-5p knockdown increased whole-cell delayed rectifier potassium current (IKd).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []