Measurement-feedback control of chiral photon emission from an atom chain into a nanofiber
2020
We theoretically investigate measurement-based feedback control of a laser-driven one-dimensional atomic chain interfaced with a nanofiber. The interfacing leads to all-to-all interactions among the atomic emitters and induces chirality, i.e. the directional emission of photons into a preferred guided mode of the nanofiber. In the setting we consider, the measurement of guided light -- conducted either by photon counting or through homodyne detection of the photocurrent quadratures -- is fed back into the system through a modulation of the driving laser field. We investigate how this feedback scheme influences the photon counting rate and the quadratures of the guided light field. Moreover, we analyse how feedback alters the many-body steady state of the atom chain. Our results provide some insights on how to control and engineer dynamics in light-matter networks realizable with state-of-the-art experimental setups.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
75
References
2
Citations
NaN
KQI