Self-trapped exciton emission in inorganic copper(I) metal halides

2021 
The broad emission and high photoluminescence quantum yield of self-trapped exciton (STE) radiative recombination emitters make them an ideal solution for single-substrate, white, solid-state lighting sources. Unlike impurities and defects in semiconductors, the formation of STEs requires a lattice distortion, along with strong electron-phonon coupling, in low electron-dimensional materials. The photoluminescence of inorganic copper(I) metal halides with low electron-dimensionality has been found to be the result of STEs. These materials were of significant interest because of their lead-free, all-inorganic structures, and high luminous efficiencies. In this paper, we summarize the luminescence characteristics of zero- and one-dimensional inorganic copper(I) metal halides with STEs to provide an overview of future research opportunities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []