Enhancing Models and Measurements of Traffic-Related Air Pollutants for Health Studies Using Dispersion Modeling and Bayesian Data Fusion.

2020 
INTRODUCTION: The adverse health effects associated with exposure to traffic-related air pollutants (TRAPs) remain a key public health issue. Often, exposure assessments have not represented the small-scale variation and elevated concentrations found near major roads and in urban settings. This research explores approaches aimed at improving exposure estimates of TRAPs that can reduce exposure measurement error when used in health studies. We consider dispersion models designed specifically for the near-road environment, as well as spatiotemporal and data fusion models. These approaches are implemented and evaluated utilizing data collected in recent modeling, monitoring, and epidemiological studies conducted in Detroit, Michigan. APPROACH: Dispersion models, which estimate near-road pollutant concentrations and individual exposures based on first principles - and in particular, high fidelity models - can provide great flexibility and theoretical strength. They can represent the spatial variability of TRAP concentrations at locations not measured by conventional and spatially sparse air quality monitoring networks. A number of enhancements to dispersion modeling and mobile on-road emissions inventories were considered, including the representation of link-based road networks and updated estimates of temporal allocation of traffic activity, emission factors, and meteorological inputs. The recently developed Research LINE-source model (RLINE), a Gaussian line-source dispersion model specifically designed for the near-road environment, was used in an operational evaluation that compared predicted concentrations of nitrogen oxides (NOx), carbon monoxide (CO), and PM2.5 (particulate matter
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    1
    Citations
    NaN
    KQI
    []