Modelling of iodine-induced stress corrosion cracking in CANDU fuel

2011 
Abstract Iodine-induced stress corrosion cracking (I-SCC) is a recognized factor for fuel-element failure in the operation of nuclear reactors requiring the implementation of mitigation measures. I-SCC is believed to depend on certain factors such as iodine concentration, oxide layer type and thickness on the fuel sheath, irradiation history, metallurgical parameters related to sheath like texture and microstructure, and the mechanical properties of zirconium alloys. This work details the development of a thermodynamics and mechanistic treatment accounting for the iodine chemistry and kinetics in the fuel-to-sheath gap and its influence on I-SCC phenomena. The governing transport equations for the model are solved with a finite-element technique using the COMSOL Multiphysics® commercial software platform. Based on this analysis, this study also proposes potential remedies for I-SCC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    28
    Citations
    NaN
    KQI
    []