Genome diversity of Chinese indigenous chicken and the selective signatures in Chinese gamecock chicken.

2020 
Gamecock chickens are one of the earliest recorded birds in China, and have accumulated some unique morphological and behavioral signatures such as large body size, muscularity and aggressive behavior, whereby being excellent breeding materials and a good model for studying bird muscular development and behavior. In this study, we sequenced 126 chicken genomes from 19 populations, including four commercial chicken breeds that are commonly farmed in China, 13 nationwide Chinese typical indigenous chicken breeds (including two Chinese gamecock breeds), one red jungle fowl from Guangxi Province of China and three gamecock chickens from Laos. Combined with 31 published chicken genomes from three populations, a comparative genomics analysis was performed across 157 chickens. We found a severe confounding effect on potential cold adaptation exerted by introgression from commercial chickens into Chinese indigenous chickens, and argued that the genetic introgression from commercial chickens into indigenous chickens should be seriously considered for identifying selection footprint in indigenous chickens. LX gamecock chickens might have played a core role in recent breeding and conservation of other Chinese gamecock chickens. Importantly, AGMO (Alkylglycerol monooxygenase) and CPZ (Carboxypeptidase Z) might be crucial for determining the behavioral pattern of gamecock chickens, while ISPD (Isoprenoid synthase domain containing) might be essential for the muscularity of gamecock chickens. Our results can further the understanding of the evolution of Chinese gamecock chickens, especially the genetic basis of gamecock chickens revealed here was valuable for us to better understand the mechanisms underlying the behavioral pattern and the muscular development in chicken.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    6
    Citations
    NaN
    KQI
    []