Impacts and detection of design smells

2012 
Changes are continuously made in the source code to take into account the needs of the customers and fix the faults. Continuous change can lead to antipatterns and code smells, collectively called “design smells” to occur in the source code. Design smells are poor solutions to recurring design or implementation problems, typically in object-oriented development. During comprehension and changes activities and due to the time-to-market, lack of understanding, and the developers’ experience, developers cannot always follow standard designing and coding techniques, i.e., design patterns. Consequently, they introduce design smells in their systems. In the literature, several authors claimed that design smells make object-oriented software systems more difficult to understand, more fault-prone, and harder to change than systems without such design smells. Yet, few of these authors empirically investigate the impact of design smells on software understandability and none of them authors studied the impact of design smells on developers’ effort. In this thesis, we propose three principal contributions. The first contribution is an empirical study to bring evidence of the impact of design smells on comprehension and change. We design and conduct two experiments with 59 subjects, to assess the impact of the composition of two Blob or two Spaghetti Code on the performance of developers performing comprehension and change tasks. We measure developers’ performance using: (1) the NASA task load index for their effort; (2) the time that they spent performing their tasks; and, (3) their percentages of correct answers. The results of the two experiments showed that two occurrences of Blob or Spaghetti Code design smells impedes significantly developers performance during comprehension and change tasks. The obtained results justify a posteriori previous researches on the specification and detection of design smells. Software development teams should warn developers against high number of occurrences of design smells and recommend refactorings at each step of the development to remove them when possible. In the second contribution, we investigate the relation between design smells and faults in classes from the point of view of developers who must fix faults. We study the impact of the presence of design smells on the effort required to fix faults, which we measure using three metrics: (1) the duration of the fixing period; (2) the number of fields and methods impacted by fault-fixes; and, (3) the entropy of the fault-fixes in the source code. We conduct an empirical study with 12 design smells detected in 54 releases of four systems: ArgoUML, Eclipse, Mylyn, and Rhino. Our results showed that the duration of the fixing period is longer for faults involving classes with design smells. Also, fixing faults in classes with design smells impacts more files, more fields, and more methods. We also observed that after a fault is fixed, the number of occurrences of design smells in the classes involved in the fault decreases. Understanding the impact of design smells on development effort is important to help development teams better assess and forecast the impact of their design decisions and therefore lead their effort to improve the quality of their software systems. Development teams should monitor and remove design smells from their software systems because they are likely to increase the change efforts. The third contribution concerns design smells detection. During maintenance and evolution tasks, it is important to have a tool able to detect design smells incrementally and iteratively. This incremental and iterative detection process could reduce costs, effort, and resources by allowing practitioners to identify and take into account occurrences of design smells as they find them during comprehensionand change. Researchers have proposed approaches to detect occurrences of design smells but these approaches have currently four limitations: (1) they require extensive knowledge of design smells; (2) they have limited precision and recall; (3) they are not incremental; and (4) they cannot be applied on subsets of systems. To overcome these limitations, we introduce SMURF, a novel approach to detect design smells, based on a machine learning technique—support vector machines—and taking into account practitioners’ feedback. Through an empirical study involving three systems and four design smells, we showed that the accuracy of SMURF is greater than that of DETEX and BDTEX when detecting design smells occurrences. We also showed that SMURF can be applied in both intra-system and inter-system configurations. Finally, we reported that SMURF accuracy improves when using practitioners’ feedback. Keywords: design smells, antipatterns, code smells, bad smells, detection, restructuring, refactorings, program comprehension, program maintenance, fault fix, empirical software engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []