Interface Strengthening of α-Mg/C14–Mg2Ca Eutectic Alloy

2021 
This study investigates the effect of the α/C14 interface on the creep strength of α-Mg/C14–Mg2Ca eutectic alloy at 473 K under a stress of 40 MPa. The α/C14 interface is composed of terraces and steps, with terraces parallel to the (1101)α pyramidal plane of the α-Mg lamellae and to the (1120)C14 columnar plane of the C14–Mg2Ca lamellae. The creep curves of the alloy exhibit three stages: a normal transient creep stage, a minimum creep rate stage, and an accelerating stage. The minimum creep rate is proportional to the lamellar spacing, indicating that the α/C14 lamellar interface plays a creep-strengthening role. In the high-resolution transmission electron microscopy image captured of the specimen after the creep test, dislocations can be mainly seen within the soft α-Mg lamellae, and they are randomly distributed at the α/C14 interface. In contrast, dislocations are rarely introduced in the hard C14–Mg2Ca lamellae. It is deduced that the α/C14 interface presents a barrier to dislocation gliding within the α-Mg lamellae and does not help rearrange the dislocations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []