Optimal Decisions for Carbon Emission Reduction through Technological Innovation in a Hybrid-Channel Supply Chain with Consumers’ Channel Preferences

2019 
This paper integrates carbon emission reduction via technological innovation with consumer channel preferences in both single- and dual-channel supply chains selling low-carbon products. Linear demand functions which simultaneously reflect the consumers’ channel preferences and low-carbon sensitivity are developed by considering the consumers’ segmentation. On this basis, we present two Stackelberg game models: one for each of the single- and dual-channel supply chains. In the first, the manufacturer sells low-carbon products through a traditional retailer who has a physical store, while in the second the manufacturer opens an online direct channel to compete with the traditional retailer. For the two models developed, the optimal pricing decisions, carbon emission reduction level, and profits are derived and discussed. Numerical examples are given to verify the effectiveness and practicality of the proposed models and solutions. The results show that supply chain members’ profits are affected by system parameters such as the carbon price, consumers’ low-carbon sensitivity, channel preference, etc. Furthermore, although the aforementioned parameters stimulate the manufacturer to reduce carbon emission, this does not always benefit the retailer. Comparison of the two models indicates that dual-channel selling is only the better choice for both the manufacturer and the retailer under certain conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    4
    Citations
    NaN
    KQI
    []