Graph-Based Shape Analysis for Heterogeneous Geometric Datasets: Similarity, Retrieval and Substructure Matching

2021 
Abstract Practically all existing shape analysis and processing algorithms have been developed for specific geometric representations of 3D models. However, the product development process always involves a large number of often incompatible geometric representations tailored to specific computational tasks that take place during this process. Consequently, a substantial effort has been expended to develop robust geometric data translation and conversion algorithms, but the existing methods have well known limitations. The Maximal Disjoint Ball Decomposition (MDBD) was recently defined as a unique and stable geometric construction and used to define universal shape descriptors based on MDBD’s associated contact graph. In this paper, we demonstrate that by applying graph analysis tools to MDBD in conjunction with graph convolutional neural networks and graph kernels, one can effectively develop methods to perform similarity, segmentation and solid feature recognition from geometric models regardless of their native geometric representation. We show that our representation-agnostic approach achieves comparable performance with state-of-the-art geometric processing methods on standard yet heterogeneous benchmark datasets while supporting all valid geometric representations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    0
    Citations
    NaN
    KQI
    []