E2E-LIADE: End-to-End Local Invariant Autoencoding Density Estimation Model for Anomaly Target Detection in Hyperspectral Image.

Hyperspectral anomaly target detection (also known as hyperspectral anomaly detection (HAD)] is a technique aiming to identify samples with atypical spectra. Although some density estimation-based methods have been developed, they may suffer from two issues: 1) separated two-stage optimization with inconsistent objective functions makes the representation learning model fail to dig out characterization customized for HAD and 2) incapability of learning a low-dimensional representation that preserves the inherent information from the original high-dimensional spectral space. To address these problems, we propose a novel end-to-end local invariant autoencoding density estimation (E2E-LIADE) model. To satisfy the assumption on the manifold, the E2E-LIADE introduces a local invariant autoencoder (LIA) to capture the intrinsic low-dimensional manifold embedded in the original space. Augmented low-dimensional representation (ALDR) can be generated by concatenating the local invariant constrained by a graph regularizer and the reconstruction error. In particular, an end-to-end (E2E) multidistance measure, including mean-squared error (MSE) and orthogonal projection divergence (OPD), is imposed on the LIA with respect to hyperspectral data. More important, E2E-LIADE simultaneously optimizes the ALDR of the LIA and a density estimation network in an E2E manner to avoid the model being trapped in a local optimum, resulting in an energy map in which each pixel represents a negative log likelihood for the spectrum. Finally, a postprocessing procedure is conducted on the energy map to suppress the background. The experimental results demonstrate that compared to the state of the art, the proposed E2E-LIADE offers more satisfactory performance.
    • Correction
    • Source
    • Cite
    • Save