Sensitivity analysis of thermal factors affecting the nonlinear freezing process of soil

2021 
Abstract In the construction of artificial freezing methods and cold region engineering, the determination of the accurate temperature field is the demand of both ensuring the stability of frozen soil and reducing the project investment. Affected by the external environment, phase change latent heat, non-linear thermal parameters, etc., the temperature evolution of the soil freezing process is a non-linear form, and the temperature field evolution will be more complex with the change of different influencing factors. Scientific control and utilization of the influencing factors of the frozen soil temperature field play a vital role in improving the freezing efficiency and accuracy of the soil temperature field. This study aims to analyze the sensitivity of thermal factors on the nonlinear formation process of frozen soil temperature field, and to provide the results for the control of various factors in frozen soil engineering. A freezing model test was designed and implemented, the boundary conditions and temperature evolution in the model were monitored. Meanwhile, the thermal parameters and unfrozen water content of the model soil were tested indoor. Then the theoretical relationship between unfrozen water content and parameters was deduced to determine the variation range of unfrozen water content. The boundary condition values (including the maximum, minimum and average values) and thermal parameters were used in the orthogonal simulation of the freezing model, respectively. The temperature simulation values were compared with the model test values, and the factors affecting the nonlinear heat transfer of frozen soils were analyzed quantitatively by both the range method and variance analysis method. Several suggestions of the vital factors in the soil freezing construction were offered based on this research.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []