Towards A Weakly Supervised Framework for 3D Point Cloud Object Detection and Annotation.

2021 
It is quite laborious and costly to manually label LiDAR point cloud data for training high-quality 3D object detectors. This work proposes a weakly supervised framework which allows learning 3D detection from a few weakly annotated examples. This is achieved by a two-stage architecture design. Stage-1 learns to generate cylindrical object proposals under inaccurate and inexact supervision, obtained by our proposed BEV center-click annotation strategy, where only the horizontal object centers are click-annotated in bird's view scenes. Stage-2 learns to predict cuboids and confidence scores in a coarse-to-fine, cascade manner, under incomplete supervision, i.e., only a small portion of object cuboids are precisely annotated. With KITTI dataset, using only 500 weakly annotated scenes and 534 precisely labeled vehicle instances, our method achieves 86-97% the performance of current top-leading, fully supervised detectors (which require 3712 exhaustively annotated scenes with 15654 instances). More importantly, with our elaborately designed network architecture, our trained model can be applied as a 3D object annotator, supporting both automatic and active (human-in-the-loop) working modes. The annotations generated by our model can be used to train 3D object detectors, achieving over 95% of their original performance (with manually labeled training data).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []