Co-benefit analysis of incentives for energy generation and storage systems; a multi-stakeholder perspective

2019 
Abstract In this work, we are analyzing the advantages of energy incentives for all the stakeholders in an energy system. The stakeholders include the government, the energy hub operator, and the energy consumer. Two streams of energy incentives were compared in this work: incentives for renewable energy generation technologies and incentives for energy storage technologies. The first type aims increasing the share of renewable energies in the electricity system while the second type aims development of systems which use clean electricity to replace fossil fuels in other sectors of an energy system such as the transportation, residential and industrial sector. In this work, we are analyzing the advantages of energy incentives for all the stakeholders in an energy system. The stakeholders include the government, the energy hub operator, and the energy consumer. Two streams of energy incentives were compared in this work: incentives for renewable energy generation technologies and incentives for energy storage technologies. The first type aims to increase the share of renewable energies in the electricity system while the second type aims the development of systems which use clean electricity to replace fossil fuels in other sectors of an energy system such as the transportation, residential and industrial sector. The results of the analysis showed that replacing fossil fuel-based electricity generation with wind and solar power is a less expensive way for the energy consumer to reduce GHG emissions (60 and 92 CAD/ tonne CO 2e for wind and solar, respectively) compared to investing on energy storage technologies (225 and 317 CAD/ tonne CO 2e for Power-to-Gas and battery powered forklifts, respectively). However, considering the current Ontario's electricity mix, incentives for the Power-to-Gas and battery powered technologies are less expensive ways to reduce emissions compared to replacing the grid with wind and solar power technologies (1479 and 2418 CAD/ tonne CO 2e for wind and solar, respectively). Our analysis also shows that battery storage and hydrogen storage are complementary technologies for reducing GHG emissions in Ontario.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    11
    Citations
    NaN
    KQI
    []