MiR-125a-3p inhibits cell proliferation and inflammation responses in fibroblast-like synovial cells in rheumatoid arthritis by mediating the Wnt/β-catenin and NF-κB pathways via targeting MAST3.

2021 
Objectives To explore the role and mechanism of miR-125a-3p in rheumatoid arthritis (RA) progression. Methods The RA-tissues and fibroblast-like synovial cells in rheumatoid arthritis (RA-FLS) were used in this study. qRT-PCR, western blot and ELISA assay were performed to detect the expression levels of IL-6, IL-β and ΤΝF-α. Dual-luciferase reporter gene assay was used to observe the binding effect of miR-125a-3p and MAST3, and CCK-8 was used to observe the effect of miR-125a-3p on the proliferation of RA-FLS. Results miR-125a-3p was significantly downregulated in the RA-tissues and RA-FLS, and miR-125a-3p could inhibit the proliferation and reduce the inflammation response of RA-FLS. Besides, MAST3 was found as a target of miR-125a-3p, and increased MAST3 could reverse the effects of miR-125a-3p on RA-FLS including decreased proliferation, reduced inflammation level and the inactivation of Wnt/β-catenin and NF-κB pathways. Conclusions This study suggests that miR-125a-3p could inactivate the Wnt/β-catenin and NF-κB pathways to reduce the proliferation and inflammation response of RA-FLS via targeting MAST3.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []