Two-step interface and velocity inversion

1998 
This paper studies the computation method of two-step inversion of interface and velocity in a region. The 3-D interface is described by a segmented incomplete polynomial; while the reconstruction of 3-D velocity is accomplished by the principle of least squares in functional space. The computation is carried out in two steps. The first step is to inverse the shape of 3-D interface; while the second step is to do 3-D velocity inversion by distributing the remaining residual errors of travel time in accordance with their weights. The data of seismic sounding in the Tangshan-Luanxian seismic region are processed, from which the 3-D structural form in depth of the Tangshan seismic region and the 3-D velocity distribution in the crust below the Tangshan-Luanxian seismic region are obtained. The result shows that the deep 3-D structure in the Tangshan seismic region trends NE on the whole and the structure sandwiched between the NE-trending Fengtai-Yejituo fault and the NE-trending Tangshan fault is an uplifted zone of the Moho. In the 3-D velocity structure of middle-lower crust below that region, there is an obvious belt of low-velocity anomaly to exist along the NE-trending Tangshan fault, the position of which tallies with that of the Tangshan seismicity belt. The larger block of low-velocity anomaly near Shaheyi corresponds to a denser earthquake distribution. In that region, there is an NW-trending belt of high-velocity anomaly, probably a buried fault zone. The lower crust below the epicentral region of the Tangshan M S=7.8 earthquake is a place where the NE-trending belt of low-velocity anomaly meets the NW-trending belt of high-velocity anomaly. The two sets of structures had played an important role in controlling the preparation and occurrence of the M S=7.8 Tangshan earthquake.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []