Immobilization of uranium in cristobalite ceramic through adsorption on mesoporous SBA-15 and further sintering process

2019 
Abstract The development of an adsorbent which can be easily transformed into stable ceramic waste forms through a simple route is necessary for the treatment of the radioactive wastewater. Herein, we report on the immobilization of uranium in cristobalite ceramic through adsorption on mesoporous SBA-15 and further sintering process. The mesoporous SBA-15 with short pore length was synthesized and employed to remove uranium from aqueous solution. Subsequently, the SBA-15 with adsorbed U (U/SBA-15) was solidified by sintering. The effects of sintering temperature and U content on the structure, densification and aqueous durability of the obtained cristobalite ceramic waste forms were investigated. The results indicate that the U/SBA-15 can be transformed into stable cristobalite ceramic after sintering at 1100-1400 °C for 6 h. Furthermore, all the obtained cristobalite ceramic waste forms exhibit good aqueous durability (∼10-4 g m-2 d-1). This work demonstrates a potential route and adsorbent to dispose the radioactive wastewater.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    3
    Citations
    NaN
    KQI
    []