Interplay of Turbulence and Proton-Microinstability Growth in Space Plasmas.

2020 
Both kinetic instabilities and strong turbulence have potential to impact the behavior of space plasmas. To assess effects of these two processes we compare results from a 3 dimensional particle-in-cell (PIC) simulation of collisionless plasma turbulence against observations by the MMS spacecraft in the terrestrial magnetosheath and by the Wind spacecraft in the solar wind. The simulation develops coherent structures and anisotropic ion velocity distributions that can drive micro-instabilities. Temperature-anisotropy driven instability growth rates are compared with inverse nonlinear turbulence time scales. Large growth rates occur near coherent structures; nevertheless linear growth rates are, on average, substantially less than the corresponding nonlinear rates. This result casts some doubt on the usual basis for employing linear instability theory, and raises questions as to why the linear theory appears to work in limiting plasma excursions in anisotropy and plasma beta.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    2
    Citations
    NaN
    KQI
    []