Scheduling for Reliability : complexity and Algorithms

2011 
This thesis deals with the mapping and the scheduling of workflows. In this context, we consider unreliable platforms, with processors subject to failures. In a first part, we consider a particular model of streaming applications : the filtering services. In this context, we aim at minimizing period and latency. We first neglect communication costs. In this model, we study scheduling problems on homogeneous and heterogeneous platforms. Then, the impact of communication costs on scheduling problems of a filtering application is studied. Finally, we consider the scheduling problem of such an application on a chain of processors. The theoretical complexity of any variant of this problem is proved. This filtering property can model the reliability of processors. The results of some computations are successfully computed, and some other ones are lost. We consider the more frequent failure types : transient failures. We aim efficient and reliable schedules. The complexity of many variants of this problem is proved. Two heuristics are proposed and compared using using simulations. Even if transient failures are the most common failures in classical grids, some particular type of platform are more concerned by other type of problems. Desktop grids are especially unstable. In this context, we want to execute iterative applications. All tasks are executed, then a synchronization occurs, and so on. Two variants of this problem are considered : applicationsof independent tasks, and applications where all tasks need to be executed at same speed. In both cases, the problem is first theoretically studied, then heuristics are proposed and compared using simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    96
    References
    1
    Citations
    NaN
    KQI
    []