Interplanetary shock-associated aurora

2019 
Interplanetary shocks or solar wind pressure pulses have prompted impacts on Earth’s magnetospheric and ionospheric environment, especially in causing dynamic changes to the bright aurora in the polar ionosphere. The auroral phenomenon associated with shock impingements, referred to as shock aurora, exhibits distinct signatures differing from other geophysical features on the dayside polar ionosphere. Shock aurora provides a direct manifestation of the solar wind–magnetosphereionosphere interaction. Imagers onboard satellites can obtain the associated large-scale auroral characteristics during shock impingement on the magnetopause. Therefore, auroral data from satellites are very useful for surveying the comprehensive features of shock aurora and their general evolution. Nonetheless, the ground-based high temporal-spatial resolution all-sky imagers installed at scientific stations play an essential role in revealing medium- and small-scale characteristics of shock aurora. Here, we focus on shock aurora imaging signatures measured by imagers onboard satellites and ground-based all-sky imagers. Citation: Liu J J, Hu H Q, Han D S, et al. Interplanetary shock-associated aurora. Adv Polar Sci, 2019, 30(1): 11-23, doi:10.13679/j.advps.2019.1.00011
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []