The Cut and Play Algorithm: Computing Nash Equilibria via Outer Approximations

2021 
The concept of Nash equilibrium enlightens the structure of rational behavior in multi-agent settings. However, the concept is as helpful as one may compute it efficiently. We introduce the Cut-and-Play, an algorithm to compute Nash equilibria for non-cooperative simultaneous games where each player's objective is linear in their variables and bilinear in the other players' variables. Using the rich theory of integer programming, we alternate between constructing (i.) increasingly tighter outer approximations of the convex hull of each player's feasible set -- by using branching and cutting plane methods -- and (ii.) increasingly better inner approximations of these hulls -- by finding extreme points and rays of the convex hulls. In particular, we prove the correctness of our algorithm when these convex hulls are polyhedra. Our algorithm allows us to leverage the mixed integer programming technology to compute equilibria for a large class of games. Further, we integrate existing cutting plane families inside the algorithm, significantly speeding up equilibria computation. We showcase a set of extensive computational results for Integer Programming Games and simultaneous games among bilevel leaders. In both cases, our framework outperforms the state-of-the-art in computing time and solution quality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    2
    Citations
    NaN
    KQI
    []