The Wave-Front Equation of Gravitational Signals in Classical General Relativity

2020 
In this paper the dynamical equation for propagating wave-fronts of gravitational signals in classical general relativity (GR) is determined. The work relies on the manifestly-covariant Hamilton and Hamilton–Jacobi theories underlying the Einstein field equations recently discovered (Cremaschini and Tessarotto, 2015–2019). The Hamilton–Jacobi equation obtained in this way yields a wave-front description of gravitational field dynamics. It is shown that on a suitable subset of configuration space the latter equation reduces to a Klein–Gordon type equation associated with a 4-scalar field which identifies the wave-front surface of a gravitational signal. Its physical role and mathematical interpretation are discussed. Radiation-field wave-front solutions are pointed out, proving that according to this description, gravitational wave-fronts propagate in a given background space-time as waves characterized by the invariant speed-of-light c. The outcome is independent of the actual shape of the same wave-fronts and includes the case of gravitational waves which are characterized by an eikonal representation and propagate in a generic curved space-time along a null geodetics. The same waves are shown: (a) to correspond to the geometric-optics limit of the same curved space-time solutions; (b) to propagate in a flat space-time as plane waves with constant amplitude; (c) to display also the corresponding form of the wave-front in curved space-time. The result is consistent with the theory of the linearized Einstein field equations and the existence of gravitational waves achieved in such an asymptotic regime. Consistency with the non-linear Trautman boundary-value theory is also displayed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    0
    Citations
    NaN
    KQI
    []