Examining the Effects of Computational Tools on Students' Conceptual Understanding of Thermodynamics of Material Concepts and Representations

2013 
Ogunwuyi, Oluwatosin O. M.S., Purdue University, May 2013. Examining the Effects of Computational Tools on Students’ Understanding of Thermodynamics of Material Concepts and Representations. Major Professor: Alejandra J. Magana, Ph.D. Technology is becoming a more critical agent for supporting learning as well as research in science and engineering. In particular, technology-based tools in the form of simulations and virtual environments support learning using mathematical models and computational methods. The purpose of this research is to: (a) measure the value added in conveying Thermodynamics of materials concepts with a blended learning environment using computational simulation tools with lectures; and (b) characterize students’ use of representational forms to convey their conceptual understanding of core concepts within a learning environment that blended Gibbs computational resource and traditional lectures. A mix-method approach was implemented that included the use of statistical analysis to compare student test performance as a result of interacting with Gibbs tool and the use of Grounded Theory inductive analysis to explore students’ use of representational forms to express their understanding of thermodynamics of material concepts. Results for the quantitative study revealed positive gains in students’ conceptual understanding before and after interacting with Gibbs tool for the majority of the concepts tested. In addition, insight gained from the qualitative analysis helped
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []