Post‐synaptic conductance increase associated with presynaptic inhibition in cat lumbar motoneurones.

1980 
1. Motoneurones were examined in which low-intensity p.b.s.t conditioning volleys caused a 5% or greater decrease of gastrocnemius monosynaptic e.p.s.p.s without evidence of long-lasting i.p.s.p.s on superimposed single sweeps. 2. Short constant current pulses were injected into these cells and in twenty-two of twenty-three cases the voltage decay was faster when preceded by the same p.b.s.t. conditioning stimuli which caused a decrease in the Ia e.p.s.p. 3. Comparing these decays to short pulse decays generated in a simple analogue neurone model suggested that after conditioning stimuli a tonic conductance increase had occurred which was located electrotonically remote from the soma in some cases or more diffusely in other cases. 4. Long-lasting i.p.s.p.s were brought out by averaging the baseline following conditioning stimuli in ten of fifteen cases, also suggesting a post-synaptic conductance increase. 5. Averaging the voltage response to long saturating constant current pulses showed a decreased motoneurone input resistance in three of eight cases. 6. The semilogarithmic decay of four of eleven conditioned e.p.s.p.s was more rapid than controls. 7. Although short pulse voltage decay analysis revealed consistent evidence for increased post-synaptic conductance following conditioning stimuli, it was not possible to decide if the location and extent of this conductance increase were sufficient to rule out presynaptic inhibition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    29
    Citations
    NaN
    KQI
    []