Effect of atom substitutions on the magnetic properties in Ce2Fe17: Toward permanent magnet applications

2021 
Due to the rapidly developing technologies and huge market demand, there has been increasing interest internationally in exploring permanent magnet formulations in addition to the well-known Nd2Fe14B and SmCo5/Sm2Co17. Given Fe's low materials cost and generally high magnetization, Fe-rich rare earth binaries such as Ce2Fe17 comprise a rich “hunting ground” for such new materials. While this compound suffers from a low ordering point and is a helimagnet, these difficulties are easily remedied by the substitution of appropriate amounts of cobalt for Fe, with room-temperature saturation magnetization as high as 1.5 T. Here, we try to switch the all-important magnetic anisotropy from planar to uniaxial behavior in Ce2Fe17 via 18h- and 6c-type atom substitutions with Si, Ir, and numerous other atoms. The uniaxial magnetocrystalline anisotropy is successfully achieved in the 6c-site-substituted Ce2Fe15Ir2 systems, along with large magnetization. We find that iridium substitution, in particular, induces a substantial uniaxial anisotropy of 11.25 MJ/m3, which is comparable to most of the current rare earth permanent magnets. Although the iridium substitution is costly, the finding of Ir-triggered uniaxial magnetic anisotropy indicates the potential of Ce–Fe-based alloys for permanent magnets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []