Total flavonoids of Oxytropis falcata Bunge have a positive effect on idiopathic pulmonary fibrosis by inhibiting the TGF-β1/Smad signaling pathway

2022 
Ethnopharmacological relevance Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with unknown etiology. Oxytropis falcata Bunge (O. falcata) is a 1–35 cm high perennial clustered herb, also known as edaxia, has viscosity and a special smell, and is mainly distributed in the western areas of China. The root of O. falcata has a diameter of 6 mm, is straight and deep, dark red and its stems are shortened, woody and multibranched. O. falcata has heat-clearing, detoxification, analgesic, anti-inflammatory, antibacterial, hemostatic and antitumor activities. Furthermore, O. falcata has excellent anti-inflammatory and analgesic effects, and it is one of the three major anti-inflammatory drugs in Tibetan medicine, known as “the king of herbs”. Total flavonoids of Oxytropis falcata Bunge (FOFB) were previously extracted, and their pharmacological activities are consistent with those of the whole herb. In this study, FOFB was extracted from O. falcata by ethanol extraction, and the mechanism of FOFB on IPF was verified by in vivo and in vitro experiments. Aim of the study In this study, we aimed to observe the effects of FOFB on idiopathic pulmonary fibrosis. Materials and methods In in vivo experiments, an IPF rat model was established by bleomycin induction. The rats were treated with FOFB (100, 200, 400 mg kg−1·d−1) for 4 weeks. Masson staining and the expression of TGF-β, p-Smad2, p-Smad3 and Smad7 in the lung tissue of rats were detected. In in vitro experiments, we perfused normal rats with FOFB (100, 200, 400 mg kg−1·d−1) and obtained the corresponding drug-containing serum. The HFL-1 cell model induced by TGF-β1 was used to detect the corresponding indices through intervention with drug-containing serum. The best intervention time for drug-containing serum was detected by the CCK-8 method. Changes in apoptosis, cytoskeleton and rough endoplasmic reticulum structure were detected. Finally, the expression of TGF-β, p-Smad2, p-Smad3 and Smad7 in cells was examined. Results In vivo, Masson staining indicated that the degree of pulmonary fibrosis increased significantly, the expression of TGF-β, p-smad2 and p-Smad3 increased significantly, and the expression of Smad7 decreased in the model group. We found that the degree of pulmonary fibrosis gradually decreased and that the inhibition of the TGF-β/Smad signaling pathway became more obvious with increasing FOFB dose. FOFB (400 mg kg−1·d−1) significantly improved the degree of pulmonary fibrosis in rats. In in vitro experiments, the CCK-8 results showed that 120 h was the best intervention time for drug-containing serum. In the model group, there was no obvious apoptosis or changes in microfilaments and microtubules, the number of rough endoplasmic reticulum increased, and the expression of TGF-β, p-Smad2 and p-Smad3 increased significantly, while the expression of Smad7 decreased significantly. We found that with the increase in drug-containing serum concentration, the apoptosis, cytoskeleton and degree of destruction of the rough endoplasmic reticulum in the HFL-1 cell model also increased, and the inhibition of the TGF-β/Smad signaling pathway became more pronounced; the effect of the drug-containing serum administered with FOFB (400 mg kg−1·d−1) was the most significant. Conclusions The results suggest that FOFB can improve the occurrence and development of IPF. The effect of FOFB on IPF may be mediated by inhibition of the TGF-β1/Smad signaling pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []