Essential effect of the electrolyte on the mechanical and chemical degradation of LiNi0.8Co0.15Al0.05O2 cathodes upon long-term cycling

2021 
Capacity fading during long-term cycling (>1500×) is still a critical challenge for Li-ion batteries that use Ni-rich layered oxides, e.g. LiNi0.8Co0.15Al0.05O2 (NCA), as the cathode. Microcracks have been previously recognized as one of the primary reasons for the observed capacity fade. Although there exists a generally developed mechanical understanding of microcracks, the role of the electrolyte has not been clearly understood, especially after extended cycling and at the atomic scale. Here, we unveil the microstructural evolution of spherical NCA secondary particles after long-term cycling using scanning transmission electron microscopy accompanied with electron energy loss spectroscopy. We found that the microcracks initiated and grew through grain boundaries, which then serve as the pathway for electrolyte penetration into secondary NCA particles. Additionally, the rock-salt phase reconstruction is prone to occur at the (003) surfaces of the primary particles or the crack surfaces, largely due to electrolyte (LiPF6 EC/EMC) corrosion. Crack propagation within the NCA grains is primarily a joint consequence from electrolyte corrosion and mechanical strain during lithiation/delithiation. During extended cycling, due to the distinctive surface facets, the primary grains located in the center of the secondary particles experience more intensive electrolyte corrosion, leading to a reduced contact with nearby particles, impairing the overall capacity. These results establish the initiation and growth mechanism of microcracks and voids in NCA-based cathodes during cycling and point out the role of the electrolyte in affecting the degradation of NCA-based cathodes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    2
    Citations
    NaN
    KQI
    []